شماره ركورد كنفرانس :
4079
عنوان مقاله :
Characterizing nonlinear maps preserving the minimum and surjectivity moduli
پديدآورندگان :
Saadati M. maryam.saadaty@modares.ac.ir Tarbiat Modares University
تعداد صفحه :
1
كليدواژه :
Preservers , Minimum moduli , Surjectivity moduli.
سال انتشار :
1395
عنوان كنفرانس :
چهل و هفتمين كنفرانس رياضي ايران
زبان مدرك :
انگليسي
چكيده فارسي :
In recent years, there has been a considerable attention to non-linear mappings on algebras of operators that preserve certain properties of operators. For examples of such maps we can refer to non-linear maps that preserve the invertibility, the spectrum or the other properties of each operator. In this note, we refer to some recent results concerning maps between algebras of operators on Banach spaces preserving any of the surjectivity, the injectivity, and the boundedness from below of the difference and sum of operators. More precisely, for infinite dimensional Banach spaces X and Y we consider maps from $B(X)$ onto $B(Y )$ satisfying $$c(\phi(S)\pm \phi(T))=c(S\pm T)$$ for all $S,T\in B(X)$, where $c(.)$ stands either for the minimum modulus, or the surjectivity modulus, or the maximum modulus. We also refer to some known results for the finite dimensional case on maps preserving the minimum modulus of the difference of matrices.
كشور :
ايران
لينک به اين مدرک :
بازگشت