شماره ركورد كنفرانس :
4079
عنوان مقاله :
Strong Biclique Cover of Planar Graphs
پديدآورندگان :
Moazami Farokhlagha f_moazemi@sbu.ac.ir Cyberspace Research Institute, Shahid Beheshti University
كليدواژه :
Strong Biclique Cover , Strong Chromatic Index , Star Arboricity , Planar Graph , Minor of a Graph
عنوان كنفرانس :
چهل و هفتمين كنفرانس رياضي ايران
چكيده فارسي :
A $t$-{\it strong biclique cover} of a graph $G$ is an edge cover, $E(G) = \cup_{i=1}^t
E(H_i)$, where each $H_i$ is a set of disjoint bicliques (complete bipartite graphs), say $H_{i1}, \ldots ,H_{ir_i}$, such that for any $1 \leq j k \leq r_i$, the graph $G$ has no edges between $H_{ik}$ and $H_{ij}$. The {\it strong biclique
cover number} $S(G)$ is the minimum number $t$ for which there exists a $t$-strong
biclique cover of $G$.
In this paper, we investigate the strong biclique cover number of graphs. We show that the strong biclique cover number of planar graphs is a constant number