شماره ركورد كنفرانس :
4079
عنوان مقاله :
The projective monoid schemes
پديدآورندگان :
Aghasi Mansour m.aghasi@cc.iut.ac.ir Isfahan University of Technology , Karimi Yousef yousef.karimi@math.iut.ac.ir Isfahan University of Technology
كليدواژه :
Monoid , A , set , Quasi , coherent sheaf , Closed monoid scheme , Projective monoid scheme
عنوان كنفرانس :
چهل و هفتمين كنفرانس رياضي ايران
چكيده فارسي :
For a certain monoid $ A$, let $\mathbb{P}_A^{r}$ be its associated projective monoid scheme. In this paper, we show that every closed monoid subscheme of $\mathbb{P}_A^{r}$ can be determined by a certain ideal of the graded monoid $S=A[t_0,t_1,...,t_r]$. Furthermore, we show that a monoid scheme $ Y $ over $ Mspec(A) $ is projective if and only if it is isomorphic to $ Mproj(S) $ for some finitely generated graded monoid $ S=\bigvee_{ n \geqslant 0} S_{n}
$,
where
.$ S_{0}=A$