شماره ركورد كنفرانس :
4079
عنوان مقاله :
On Fuglede-Putnam type theorems for generalized *-Aluthge transform
پديدآورندگان :
Maleki M. manzar.maleki@gmail.com International Campus, Ferdowsi University of Mashhad , Janfada A. R. ajanfada@birjand.ac.ir University of Birjand , Nabavi Sales S. M. S sadegh.nabavi@hsu.ac.ir Hakim Sabzevari University
كليدواژه :
Fuglede , Putnam theorem , Generalized * , Aluthgeh transform , Schatten p , norms
عنوان كنفرانس :
چهل و هفتمين كنفرانس رياضي ايران
چكيده فارسي :
Let $\mathcal{H}$ and $\mathcal{K}$ be Hilbert spaces and let $A=U|A|$ and $B=V|B|$ be the polar
decompositions of $A\in \mathbb{B}(\mathcal{H})$ and $B\in \mathbb{B}(\mathcal{K})$ and let ${\rm Com}(A,B)$
stand for the set of operators $X\in \mathbb{B}(\mathcal{K},\mathcal{H})$ such that $AX=XB$. Let $\tilde{C}^{(*)}_{(s,t)}$
denote the generalized $*$-Aluthge transform of a bounded linear operator $C$. We investigate
that under what conditions on operators ${\rm Com}(A,B)={\rm Com}(\tilde{A}^{(*)}_{(s,t)},\tilde{B}^{(*)}_{(s,t)})$.
Also we prove an inequality for Schatten $p$-norms related to this equality.