شماره ركورد كنفرانس :
4109
عنوان مقاله :
Bayesian nonparametric weighted sampling inference using Dirichlet process mixture model
پديدآورندگان :
‎Rahnamay Kordasiabi ‎S ‎Department of Statistics‎, ‎Razi University‎, ‎Kermanshah‎, ‎Iran‎ , ‎Khazaei ‎S ‎Department of Statistics‎, ‎Razi University‎, ‎Kermanshah‎, ‎Iran‎
تعداد صفحه :
11
كليدواژه :
‎Sample survey inference‎ , ‎Survey weighting‎ , ‎Poststratification‎ , ‎Dirichlet process mixture model‎ , ‎Bayesian nonparametric regression
سال انتشار :
1396
عنوان كنفرانس :
يازدهمين سمينار ملي احتمال و فرآيندهاي تصادفي
زبان مدرك :
انگليسي
چكيده فارسي :
‎We study Bayeian inference for the population mean in a design-based survey context‎. ‎The nonsampled units values are not required for the usual Horvitz-Thompson estimator‎. ‎The main focus of the paper is to incorporate information available from external sources to improve estimation and inference for finite population quantities‎. ‎In Bayesian method for the finite population inference‎, ‎Si et al‎. ‎(2015) showed that including the weights of the nonsampled units in the population as predictors in a nonparametric Gaussian process regression can result in improved point estimator of the finite population mean‎. ‎We propose a Bayesian nonparametric framework with Dirichlet process mixture model that is incorporating the wieghts as available information to imput the nonsampled units‎.
كشور :
ايران
لينک به اين مدرک :
بازگشت