شماره ركورد كنفرانس :
4109
عنوان مقاله :
A sensitivity analysis for dropout mechanism in longitudinal data using reversible jump MCMC
پديدآورندگان :
‎Baghfalaki ‎T Department of Statistics‎, ‎Faculty of Mathematical Sciences‎, ‎Tarbiat Modares University‎, ‎Tehran‎, ‎Iran , ‎Jalali Farahani ‎E‎ Department of Statistics‎, ‎Faculty of Mathematical Sciences‎, ‎Tarbiat Modares University‎, ‎Tehran‎, ‎Iran
تعداد صفحه :
11
كليدواژه :
‎Bayesian approach‎ , ‎Longitudinal data‎ , ‎Marginal model‎ , ‎Missingness mechanism‎ , ‎Reversible Jump MCMC
سال انتشار :
1396
عنوان كنفرانس :
يازدهمين سمينار ملي احتمال و فرآيندهاي تصادفي
زبان مدرك :
انگليسي
چكيده فارسي :
Existence of missing values is an inseparable part of longitudinal studies in epidemi- ology, medical and clinical studies. Usually researchers, for simplicity, ignore the missingness mechanism while, ignoring a not at random mechanism may lead to misleading results. In this paper, we use a Bayesian paradigm for fitting selection model of Heckman (Heckman, 1976), which allows the non-ignorable missingness for longitudinal data. Also, We use reversible-jump Markov chain Monte Carlo to allow the model to choose between non-ignorable and ignorable structures for missingness mechanism, and show how the selection can be incorporated. The approach is also used for analyzing a real data set
كشور :
ايران
لينک به اين مدرک :
بازگشت