شماره ركورد كنفرانس :
4155
عنوان مقاله :
The Multiple Comparison Problem in Neuroimaging
پديدآورندگان :
Saleh Elahe e.saleh3@ymail.com Tehran University of Medical , Zare Sadeghi Arash zsadeghi@alumnus.tums.ac.ir Iran University of Medical Sciences in Tehran , Najibi Seyed Morteza mor.najibi@gmail.com Shiraz University
تعداد صفحه :
1
كليدواژه :
FMRI data , False discovery rate , Multiple comparisons , Bonferroni correction , cluster , based correction.
سال انتشار :
1396
عنوان كنفرانس :
اولين همايش ملي روشهاي مدرن در قيمت گذاري هاي بيمه اي و آمارهاي صنعتي
زبان مدرك :
انگليسي
چكيده فارسي :
Functional magnetic resonance imaging (fMRI) is a safe and non-invasive way to assess brain functions by using signal changes associated with the brain activity. Current scientific techniques in fMRI image processing routinely produce hypothesis testing problems with hundreds or thousands of voxels to consider simultaneously. This matter occurs when we want to make statistical inferences about activated voxels simultaneously. This poses new difficulties for the statistician, but also opens new opportunities. In this paper, we will review and discuss the methods that are using as solutions of the multiple comparison problems in neuroimaging.
كشور :
ايران
لينک به اين مدرک :
بازگشت