شماره ركورد كنفرانس :
4191
عنوان مقاله :
Clustering Tehran stock market data for portfolio management
پديدآورندگان :
Sadeghi Somayeh s.sadeghi.m@aut.ac.ir Amirkabir University of Thechnology, Tehran, Iran , Seifi Abbas Amirkabir University of Thechnology, Tehran, Iran
كليدواژه :
Portfolio selection , K , means clustering , Fuzzy C , mean clustering
عنوان كنفرانس :
دوازدهمين كنفرانس بين المللي مهندسي صنايع
چكيده فارسي :
In this paper we use some clustering methods for grouping stocks into clusters. After clustering, the stocks could be selected from these groups for building a portfolio. It meets the criterion of minimizing the risk by diversification of a portfolio. The clustering approach categorizes stocks on certain investment criteria. We have used stock returns at different times along with their valuation ratios from the stocks of Tehran Stock Exchange for a period of year 2012–2013. Results of our analysis show that Kmeans cluster analysis builds the most compact clusters as compared to Fuzzy C-means for stock classification data. We then select stocks from the clusters to build a portfolio, maximizing portfolio return and compare the returns with that of the benchmark.