شماره ركورد كنفرانس :
4214
عنوان مقاله :
A Globally Convergent BFGS Gauss-Newton method for Symmetric Non-Monotone Variational Inequalities
پديدآورندگان :
Abdi Fatemeh Amirkabir University of Technology , Shakeri Fatemeh Amirkabir University of Technology
تعداد صفحه :
7
كليدواژه :
Complementarity problem , Variational inequality , Gauss , Newton Method , Josephy , Newton method , BFGS method.
سال انتشار :
1396
عنوان كنفرانس :
دهمين كنفرانس بين المللي تحقيق در عمليات
زبان مدرك :
انگليسي
چكيده فارسي :
In this paper, a modified Josephy-Newton direction is presented for solving the symmetric non-monotone variational inequality. The direction is a suitable descent direction for the regularized gap function. In fact, this new descent direction is obtained by developing the Gauss-Newton idea, a well-known method for solving systems of equations, for non-monotone variational inequalities, and is then combined with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) type secant update formula. Also, when Armijo-type inexact line search is used, global convergence of the proposed method is established for non-monotone problems under some appropriate assumptions.
كشور :
ايران
لينک به اين مدرک :
بازگشت