شماره ركورد كنفرانس :
4255
عنوان مقاله :
STRONG CONVERGENCE OF NUMERICAL METHODS FOR NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS
پديدآورندگان :
نسب زاده حميده h.nasabzadeh@ub.ac.ir استاديار
تعداد صفحه :
5
كليدواژه :
Stochastic differential equation with jump , One , sided Lipschitz condition , Poisson process , Strong convergence.
سال انتشار :
1395
عنوان كنفرانس :
چهارمين همايش رياضيات و علوم انساني
زبان مدرك :
انگليسي
چكيده فارسي :
X. Mao and Lukasz Szpruch [3] proved strong con- vergence of stochastic differential equations (SDEs) under less re- strictive conditions. As an application of this general theory that they showed the diffusion coeficient is globally Lipschitz, but the drift coeficient satisfies only a one-sided Lipschitz condition the numerical methods are strong convergence; In this paper we ex- tend this conditions to the (SDEs) with jumps, where presented by D. Higham and Peter E. Kloeden [1] for (SDEs) with Poisson- driven jumps and apply this condition for split-step backward Eu- ler(SSBE) method
كشور :
ايران
لينک به اين مدرک :
بازگشت