شماره ركورد كنفرانس :
4255
عنوان مقاله :
STRONG CONVERGENCE OF NUMERICAL METHODS FOR NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS
پديدآورندگان :
نسب زاده حميده h.nasabzadeh@ub.ac.ir استاديار
كليدواژه :
Stochastic differential equation with jump , One , sided Lipschitz condition , Poisson process , Strong convergence.
عنوان كنفرانس :
چهارمين همايش رياضيات و علوم انساني
چكيده فارسي :
X. Mao and Lukasz Szpruch [3] proved strong con-
vergence of stochastic differential equations (SDEs) under less re-
strictive conditions. As an application of this general theory that
they showed the diffusion coeficient is globally Lipschitz, but the
drift coeficient satisfies only a one-sided Lipschitz condition the
numerical methods are strong convergence; In this paper we ex-
tend this conditions to the (SDEs) with jumps, where presented
by D. Higham and Peter E. Kloeden [1] for (SDEs) with Poisson-
driven jumps and apply this condition for split-step backward Eu-
ler(SSBE) method