شماره ركورد كنفرانس :
4255
عنوان مقاله :
A Fast Numerical Algorithm for pricing of American Call Options under Jump-Diffusions: An Artificial Boundary Approach
پديدآورندگان :
Kazemi S. M. M. smm.kazemi@aut.ac.ir دانشجو , دهقان مهدي mdehghan@aut.ac.ir هيات علمي , فروش باستاني علي bastani@iasbs.ac.ir هيات علمي
كليدواژه :
American call option , Free boundary value problem , Artificial boundary conditions , Jump , diffusion processes
عنوان كنفرانس :
چهارمين همايش رياضيات و علوم انساني
چكيده فارسي :
In this paper, we propose a new method to approximate the price of an American call option written on a dividend-paying risky underlying following a jump-diffusion process. We extend the methodology proposed in [H. Han and X. Wu, A fast numerical method for the Black-Scholes equation of American options, SIAM J. Numer. Anal. 41 (6) (2003) 2081-2095] to the case of parabolic partial integro-differential equations (PIDEs). The integral term in the PIDE arising from this model can also be considered as a driving term, then the integro-differential equation can be viewed as a parabolic PDE. Using this approach, we introduce an exact non-local boundary condition on a suitably defined artificial (transparent) boundary introduced to reduce the infinite ``physical domain into a finite ``computational one. We then develop a Crank-Nicolson scheme to solve the PIDE along with the artificial
boundary condition. Our results show that the proposed approach is efficient and gives a better
accuracy than other alternatives from the literature.