شماره ركورد كنفرانس :
4255
عنوان مقاله :
A Fast Numerical Algorithm for pricing of American Call Options under Jump-Diffusions‎: ‎An Artificial Boundary Approach
پديدآورندگان :
‎Kazemi S‎. ‎M‎. ‎M‎. ‎ smm.kazemi@aut.ac.ir دانشجو , دهقان مهدي ‎mdehghan@aut.ac.ir هيات علمي , فروش باستاني علي ‎bastani@iasbs.ac.ir هيات علمي
تعداد صفحه :
5
كليدواژه :
American call option , Free boundary value problem , Artificial boundary conditions , Jump , diffusion processes
سال انتشار :
1395
عنوان كنفرانس :
چهارمين همايش رياضيات و علوم انساني
زبان مدرك :
انگليسي
چكيده فارسي :
‎In this paper‎, ‎we propose a new method to approximate the price of an American call option written on a dividend-paying risky underlying following a jump-diffusion process‎. ‎We extend the methodology proposed in [H‎. ‎Han and X‎. ‎Wu‎, ‎A fast numerical method for the Black-Scholes equation of American options‎, ‎SIAM J‎. ‎Numer‎. ‎Anal‎. ‎41 (6) (2003) 2081-2095] to the case of parabolic partial integro-differential equations (PIDEs)‎. ‎The integral term in the PIDE arising from this model can also be considered as a driving term‎, ‎then the integro-differential equation can be viewed as a parabolic PDE‎. ‎Using this approach‎, ‎we introduce an exact non-local boundary condition on a suitably defined artificial (transparent) boundary introduced to reduce the infinite ``physical domain into a finite ``computational one‎. ‎We then develop a Crank-Nicolson scheme to solve the PIDE along with the artificial‎ ‎boundary condition‎. ‎Our results show that the proposed approach is efficient and gives a better‎ ‎accuracy than other alternatives from the literature‎.
كشور :
ايران
لينک به اين مدرک :
بازگشت