شماره ركورد كنفرانس :
4303
عنوان مقاله :
Strict inner amenability for tensor product of Hopf-von Neumann algebras
پديدآورندگان :
Ghanei MOHAMMAD REZA mr.ghanei@khansar-cmc.ac.ir Khansar Faculty of Mathematics and Computer Science
كليدواژه :
bounded approximate identity , strict inner amenability , tensor product of Hopf , von Neumann algebras
عنوان كنفرانس :
پنجمين سمينار ملي آناليز تابعي و كاربردهاي آن
چكيده فارسي :
In this paper for two Hopf-von Neumann algebras
${\Bbb H}_1=(\frak{M}_1,\Gamma_1)$ and
${\Bbb H}_2=(\frak{M}_2,\Gamma_2)$, we prove that
if $\mathbb{H}_1$ is
strictly inner amenable and either ${\mathbb{H}_2}$ is strictly
inner amenable or predual of ${\frak{M}_2}$ has a bounded approximate identity, then tensor product of $\mathbb{H}_1$ and $\mathbb{H}_2$
is strictly inner amenable.