شماره ركورد كنفرانس :
4303
عنوان مقاله :
An Integral-type operator from area nevanlinna spaces to Bloch-type spaces
پديدآورندگان :
Rezaei SHAYESTEH sh.rezaei@iau-aligudarz.ac.ir Aligudarz Branch, Islamic Azad university,
كليدواژه :
Nevanlinna space , Bloch , type space , integral , type operator
عنوان كنفرانس :
پنجمين سمينار ملي آناليز تابعي و كاربردهاي آن
چكيده فارسي :
Let $H(\mathbb{D})$ denote the class of all analytic functions on the open unit disk $\mathbb{D}$
of the complex plane $\mathbb{C}$. Let $n$ be a nonnegative integer,
$\varphi$ be an analytic self-map of $\mathbb{D}$ and $g\in H(\mathbb{D})$.
The boundedness and compactness of an integral-type operator
$$(C_{\varphi,g}^nf)(z)=\int_0^zf^{(n)}(\varphi(\xi))g(\xi)d\xi\qquad (f\in H(\mathbb{D}),\quad z\in\mathbb{D}),$$
from the area Nevanlinna spaces $N_\alpha^p$,
where $1\leqslant p \infty$, $\alpha -1$, to the Bloch-type spaces $B_\mu$ and the little Bloch-type spaces $B_{\mu,0}$, where $\mu$ is normal
are characterized in this paper.