شماره ركورد كنفرانس :
4329
عنوان مقاله :
On weakly S-semipermutable subgroups and weakly SS-permutable subgroups of finite groups
پديدآورندگان :
Aghajari Z. Z.Aghajari@stu.sku.ac.ir Faculty of Mathematics, Department of Pure Mathematics, University of Shahrekord, P. O. Box 115, Shahrekord, Iran , Rezaeezadeh G. R. rezaeezadeh@sci.sku.ac.ir Faculty of Mathematics, Department of Pure Mathematics, University of Shahrekord, P. O. Box 115, Shahrekord, Iran
كليدواژه :
Weakly S , semipermutable subgroup , Weakly SS , permutable subgroup , p , nilpotent group.
عنوان كنفرانس :
نهمين كنفرانس ملي نظريه گروههاي ايراني
چكيده فارسي :
A subgroup H of a finite group G is said to be S-permutable in G, if H permutes with all
Sylow subgroups of G. If H permutes with every Sylow p-subgroup of G such that (|H|; p) = 1,
then H is called an S-semipermutable subgroup of G. In this note, we say that H is a weakly
S-semipermutable subgroup of G, if there exists a normal subgroup T of G such that HT is Spermutable
and H ∩ T is S-semipermutable in G. We assume that some p-subgroups of G are
weakly S-semipermutable in G and we verify the influence of these subgroups on the structure of
G.