شماره ركورد كنفرانس :
4338
عنوان مقاله :
Trace Inequalities and Quantum Relative Entropies
پديدآورندگان :
Manjegani Seyed Mahmoud manjgani@cc.iut.ac.ir Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran;
كليدواژه :
Relative entropy , strong subadditivity , matrix inequalities , Klein inequality
عنوان كنفرانس :
سومين سمينار ملي نظريه عملگرها و كاربردهاي آن
چكيده فارسي :
In this short note, we give an introduction to the subject of trace and results that are relevant to quantum entropies. We introduce relative entropy $H_{\phi}(A,B)=\t[\phi(A)-\phi(B)-\phi(B)(A-B)]$ for $\phi$ a convex function and $A,~B$ bounded self adjoint operators on a Hilbert space $H$. In particular, we show that this relative entropy is monotone if and only if $\phi$ is operator monotone.