شماره ركورد كنفرانس :
4338
عنوان مقاله :
The spectral distance from a block matrix to set of block matrices having two prescribed eigenvalues
پديدآورندگان :
Nazari Alimohammad a-nazari@araku.ac.ir Department of Mathematics, Arak University, Arak, Iran; ; , Nezami Atiyeh atiyeh.nezami@gmail.com Department of Mathematics, Arak University, Arak, Iran;
كليدواژه :
Normal Matrix , Eigenvalues , Eigenvectors
عنوان كنفرانس :
سومين سمينار ملي نظريه عملگرها و كاربردهاي آن
چكيده فارسي :
In this paper consider the block normal matrix $G_{D}=\begin{pmatrix} A B \\ C D \end{pmatrix}$, where $A \in\mathbb{C}^{n \times n}$, $B \in\mathbb{C}^{n \times m}$, $C \in\mathbb{C}^{m \times n}$ and $D \in \mathbb{C}^{m \times m}$. We find the block normal matrix $G_{D_0}=\begin{pmatrix} A B \\ C D_0 \end{pmatrix} $ such that be the closest matrix to $G_D$ and has prescribed eigenvalues $\lambda_1$ and $\lambda_2$.