شماره ركورد كنفرانس :
4338
عنوان مقاله :
Existence of three solutions for a class of $(p_1,\ldots‎ , ‎p_n)$-biharmonic‎ ‎systems involving a Lipschitz function via variational methods
پديدآورندگان :
‎Afrouzi Ghasem A‎. afrouzi@umz.ac.ir Department of Mathematics‎, ‎Faculty of Mathematical Sciences‎, ‎University of Mazandaran‎, ‎Babolsar‎, ‎Iran; ‎ , Pourali Roudbari ‎Sina sproodbari@yahoo.com Department of Mathematics‎, ‎Faculty of Mathematical Sciences‎, ‎University of Mazandaran‎, ‎Babolsar‎, ‎Iran;
تعداد صفحه :
4
كليدواژه :
Three solutions‎ , ‎Navier boundary conditions‎ , ‎variational method‎ , ‎$(p_1‎ , ‎\ldots‎ , ‎p_n)$ , biharmonic systems
سال انتشار :
1395
عنوان كنفرانس :
سومين سمينار ملي نظريه عملگرها و كاربردهاي آن
زبان مدرك :
انگليسي
چكيده فارسي :
In this paper, we prove the existence of at least three weak solutions to Navier boundary conditions for a system involv- ing (p_1, ..., p_n)-biharmonic Laplacians and a Lipschitz function. We use a variational approach based on a three critical points the- orem due to Ricceri.
كشور :
ايران
لينک به اين مدرک :
بازگشت