پديدآورندگان :
Heydari Mohammad Taghi heydari@yu.ac.ir Department of Mathematics,
Faculty of Sciences, University of Yasuj, Yasuj, Iran;
, khadem Amene Department of Mathematics,
Faculty of Sciences, University of Yasuj, Yasuj, Iran; , Ranjbar Sajad sranjbar@eghlid.ac.ir Department of Mathematics, College of Sciences,Higher Education Center of Eghlid, Eghlid, Iran; ;
كليدواژه :
C$^{*}$ , algebra Numerical range , Maximal C$^{*}$ , algebra Numerical range , Maximal Numerical range
چكيده فارسي :
Let $\mathcal{A}$ be a C$^{*}$-algebra with unit $1 $ and let $\sum$ be the state space of $\mathcal{A}$, i.e. $\sum=\{f \in \mathcal{A}^{*} : f\geq 0, f(1)=1\}.$ For each $a\in \mathcal{A}$, we define the maximal $C^{*}$-algebra numerical rang of $a$ by $V_{0}(a) := \{f(a) :f \in \sum f(a^{*}a)=\|a\|^{2}\}$ and study some of its properties.