شماره ركورد كنفرانس :
4338
عنوان مقاله :
Positive Block Matrices
پديدآورندگان :
Najafi Hamed hamednajafi20@gmail.com Department of Pure Mathematics, Ferdowsi University
of Mashhad, Mashhad, Iran;
كليدواژه :
Geometric mean , positive block matrix , completely positive linear map
عنوان كنفرانس :
سومين سمينار ملي نظريه عملگرها و كاربردهاي آن
چكيده فارسي :
Let $C$ and $D$ be positive operators such that $C\\leq D$ and $D$ be invertible. We show that there exists a trace preserving unital completely positive map $\\Phi_{C,D}:\\mathbb{B}(\\mathcal{H})\\rightarrow \\mathbb{B}(\\mathcal{H})$ such that the block operator matrices \\begin{equation*} \\left( \\begin{array}{cc} \\Phi_{C,D}(A) amp; C \\\\ C amp; \\Phi_{C,D}(B) \\\\ \\end{array} \\right) \\end{equation*} are positive, for all positive operators $A$ and $B$ such that $D=A\\sharp B$.