چكيده فارسي :
Given a finite group $G$, the \textit{bipartite divisor graph}, denoted by $B(G)$, for its irreducible character degrees is the bipartite graph with bipartition consisting of $cd(G)^{*}$, where $cd(G)^{*}$ denotes the nonidentity irreducible character degrees of $G$ and the $\rho(G)$ which is the set of prime numbers that divide these degrees, and with $\{p,n\}$ being an edge if $\gcd(p,n)\neq 1$. In this talk we consider the case that $B(G)$ is a regular graph and in particular, the case where $B(G)$ is a cycle