شماره ركورد كنفرانس :
4371
عنوان مقاله :
Generalized exponent of groups
پديدآورندگان :
Abdollahi .A a.abdollahi@math.ui.ac.ir University of Isfahan , Daoud .B boun_daoud@yahoo.fr Ferhat Abbas University , Farrokhi D. G .M m.farrokhi.d.g@gmail.com Muroran Institute of Technology , Guerboussa .Y yassine_guer@hotmail.fr University Kasdi Merbah Ouargla
تعداد صفحه :
5
كليدواژه :
Generalized exponent , polynomial identity
سال انتشار :
1396
عنوان كنفرانس :
دهمين كنفرانس ملي نظريه گروه هاي ايران
زبان مدرك :
انگليسي
چكيده فارسي :
‎A group $G$ satisfies a positive generalized identity of degree $n$ if there exist elements $g_1,\ldots,g_n\in G$ such that $x^{g_1}\cdots x^{g_n}=1$ for all $x\in G$‎. ‎The minimum degree of such an identity is called the generalized exponent of $G$‎. ‎Among other things‎, ‎we prove that every finitely generated solvable group satisfying a positive generalized identity of prime degree is a finite $p$-group‎. ‎Consequently‎, ‎we show that every finite group with a positive generalized identity of degree $5$ is a $5$-group of exponent dividing $25$
كشور :
ايران
لينک به اين مدرک :
بازگشت