شماره ركورد كنفرانس :
4380
عنوان مقاله :
Seidel energy and Seidel Estrada index
پديدآورندگان :
J. Askari Farsangi iranmanesh@modares.ac.ir Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O.Box: 14115-137, Tehran, Iran;jalal.askari@modares.ac.ir
A. Iranmanesh;Department of Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O.
Box: 14115-137, Tehran, Iran;
كليدواژه :
Seidel Estrada index , graph eigenvalue , seidel matrix , conference matrix , KKT , method.
عنوان كنفرانس :
دومين كنفرانس جبر محاسباتي، نظريه محاسباتي اعداد و كاربردها
چكيده فارسي :
Let G be a simple graph with vertex set V(G) and (0,1)-adjacency matrix A. As usual, S(G)=J-I-
2A denotes the Seidel matrix of the graph G. Let q1;q2; :::;qn and l1;l2; :::;ln be, the eigenvalues
of adjacency matrix and the Seidel matrix of G respectively. We generalized the concept energy
of Siedel matrix S(G) which denoted by Sa(G); Sa(G) and obtained some results related to con-
cept. We define and investigate the Seidel Estrada index, ån
i=1 eli
. We establish lower and upper
bounds for the Seidel Energy and Seidel Estrada index in term of the number of vertices. Also
some inequalities between Seidel Estrada and the Seidel Energy of G are obtained.