شماره ركورد كنفرانس :
4380
عنوان مقاله :
Determinant representations of sequences
پديدآورندگان :
A. R. Moghaddamfar moghadam@ipm.ir
Faculty of Mathematics, K. N. Toosi University of Technology,
P. O. Box 16315–1618, Tehran, Iran;
moghadam@kntu.ac.ir and , S. N. Salehy and S. N. Salehy
Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA.
كليدواژه :
Determinant , generalized Pascal triangle , (Quasi) Toeplitz matrix , (Quasi) Pascal , , like matrix , Fibonacci (Lucas , Jacobsthal and Pell) sequence.
عنوان كنفرانس :
دومين كنفرانس جبر محاسباتي، نظريه محاسباتي اعداد و كاربردها
چكيده فارسي :
In this talk we recall some recent results concerning (integer) matrices whose leading principal
minors formwell-known sequences such as Fibonacci, Lucas, Jacobsthal and Pell (sub)sequences.
There are many different ways of constructing such matrices. Some of these matrices are con-
structed by homogeneous or non-homogeneous recurrence relations, and others are constructed
by convolution of two sequences. Here, we will illustrate the idea of some methods by construct-
ing some integer matrices of this kind.