• شماره ركورد كنفرانس
    4380
  • عنوان مقاله

    Determinant representations of sequences

  • پديدآورندگان

    A. R. Moghaddamfar moghadam@ipm.ir Faculty of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315–1618, Tehran, Iran; moghadam@kntu.ac.ir and , S. N. Salehy and S. N. Salehy Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA.

  • تعداد صفحه
    15
  • كليدواژه
    Determinant , generalized Pascal triangle , (Quasi) Toeplitz matrix , (Quasi) Pascal , , like matrix , Fibonacci (Lucas , Jacobsthal and Pell) sequence.
  • سال انتشار
    ۱۳۹۴
  • عنوان كنفرانس
    دومين كنفرانس جبر محاسباتي، نظريه محاسباتي اعداد و كاربردها
  • زبان مدرك
    انگليسي
  • چكيده فارسي
    In this talk we recall some recent results concerning (integer) matrices whose leading principal minors formwell-known sequences such as Fibonacci, Lucas, Jacobsthal and Pell (sub)sequences. There are many different ways of constructing such matrices. Some of these matrices are con- structed by homogeneous or non-homogeneous recurrence relations, and others are constructed by convolution of two sequences. Here, we will illustrate the idea of some methods by construct- ing some integer matrices of this kind.
  • كشور
    ايران