شماره ركورد كنفرانس :
4418
عنوان مقاله :
Text classification with unbalanced classes using Bayes formula
پديدآورندگان :
Saeedi Mohammadi Mohammad Reza Bu-Ali Sina University, Hamadan, Iran , Alagheband Mohammad Reza Bu-Ali Sina University, Hamadan, Iran , Tabibzade Omid Bu-Ali Sina University, Hamadan, Iran, , Dezfoulian Mir Hossein Bu-Ali Sina University, Hamadan, Iran
تعداد صفحه :
۴
كليدواژه :
Classification , texts classification , Bayesian method , unbalanced texts
سال انتشار :
۱۳۹۱
عنوان كنفرانس :
يازدهمين كنفرانس سراسري سيستم هاي هوشمند
زبان مدرك :
انگليسي
چكيده فارسي :
A common method for text classification is using multinomial naive Bayes (MNB) that is a version of naive Bayes with relatively simple calculations for redicting the related classes, using a data set with outcome of high performance. In this paper, we resolve one of the problems of text classification for imbalanced data sets and also we propose a correction to previous works for adjusting their characteristics. This correction can be used as other data normalization step. Modified version of classification gives much more accurate results. The results from our experiments show that, the precision of this method is more than 0.94, which is a noticeable result in the Persian text document classification
كشور :
ايران
لينک به اين مدرک :
بازگشت