شماره ركورد كنفرانس :
3814
عنوان مقاله :
Comparison of Multiple linear Regression and Neural Network for the Prediction of Entropy of Amino Acid Derivatives
پديدآورندگان :
Safari Afsaneh Arak Branch, Islamic Azad University , Shafiei Fatemeh f-shafiei@iau-arak.ac.ir Arak Branch, Islamic Azad University
كليدواژه :
Amino acids , Multiple linear regressions , Artificial neural networks , QSPR.
عنوان كنفرانس :
هشتمين كنفرانس و كارگاه ملي رياضي - شيمي
چكيده فارسي :
The relationship between topological indices such as Randic, Balaban to the entropy (S) of 96 amino acid derivatives is
represented. The quantum chemical parameter is taken from the quantum mechanics methodology with HF level using
the ab initio 6-31G basis sets. The multiple linear regressions (MLR) and artificial neural network (ANN) were tested to
give the QSPR models. Comparison of the results revealed that the application the ANN method gave better results than
MLR method.