شماره ركورد كنفرانس :
4724
عنوان مقاله :
mY -Quotient structure
پديدآورندگان :
Ghafleh Marammazi Kosar 841030kmarmazi@gmail.com Graduate of MSc, Shahid Chamran University Of Ahvaz, Ahvaz؛
كليدواژه :
minimal structure , $ m_{Y}$ , quotient structure , $ M $ , open function , $ M $ , closed function
عنوان كنفرانس :
|اولين همايش ملي رياضي و آمار
چكيده فارسي :
Let $ (X, m_{X} )$ is a minimal structure, $ Y $ is a set and $ g: X\longrightarrow Y $ is an onto mapping. We define the $ m_{Y}$ -quotient structure on $ Y $ with $ {m_{Y}}_{g}$. We show if $ (X, m_{X} )$ and $ (Y, m_{Y} )$ are minimal structures and $ f: X\longrightarrow Y $ is $ M $-continuous and either $ M $-open or $ M $-closed, then the minimal structure $ m_{Y} $ on $ Y $ is the $ m_{Y}$ -quotient structure $ {m_{Y}}_{f} $.