شماره ركورد كنفرانس :
3385
عنوان مقاله :
An ensemble learning method for scene classification based on Hidden Markov Model image representation
پديدآورندگان :
Taherkhani Fariborz Department of Computer Science University of Wisconsin-Milwaukee WI - Milwaukee, USA , Hedayati Reza Department of Electrical Engineering Sharif University of Technology Tehran
كليدواژه :
Markov Random Field , Ensemble learning method , Image classification , SVM , Optimization
سال انتشار :
شهريور 1395
عنوان كنفرانس :
دومين كنگره بين المللي مهندسي صنايع و سيستم ها
زبان مدرك :
انگليسي
چكيده لاتين :
Low level images representation in feature space performs poorly for classification with high accuracy since this level of representation is not able to project images into the discriminative feature space. In this work, we propose an efficient image representation model for classification. First we apply Hidden Markov Model (HMM) on ordered grids represented by different type of image descriptors in order to include causality of local properties existing in image for feature extraction and then we train up a separate classifier for each of these features sets. Finally we ensemble these classifiers efficiently in a way that they can cancel out each other errors for obtaining higher accuracy. This method is evaluated on 15 natural scene dataset. Experimental results show the superiority of the proposed method in comparison to some current existing methods.
كشور :
ايران
تعداد صفحه 2 :
6
از صفحه :
367
تا صفحه :
372
لينک به اين مدرک :
بازگشت