شماره ركورد كنفرانس :
3385
عنوان مقاله :
A New Modular Neural Networks Model For Forecasting Solar Radiation
پديدآورندگان :
Rajabi Khanghahi Mohammad Sadegh Department of Industrial Engineering Amirkabir University of Technology (polytechnic Tehran), Tehran , abbasi Fatemeh Department of Management and Economic Islamic Azad University - Science and Research Branch line Tehran
كليدواژه :
feature selection , K-means clustering , modular neural network , forecasting , solar radiation , ANFIS , NARX
سال انتشار :
شهريور 1395
عنوان كنفرانس :
دومين كنگره بين المللي مهندسي صنايع و سيستم ها
زبان مدرك :
انگليسي
چكيده لاتين :
Forecasting plays an important role in the accurate performance of solar energy system. In this study, a hybrid model, consist of feature selection method, K-means clustering algorithm, adaptive neuro-fuzzy inference system, nonlinear auto-regressive model with exogenous inputs, multilayer perceptron, and three static modular structure (Basic Ensemble Method, Winner-Take-All and Dynamically Average Network) as a modular neural networks model has been proposed to forecast the solar radiation. The demographic data contain wind speed, air temperature, real humidity and wind direction was collected from synoptic station. The results of proposed model were compared with the other models. Finding showed that the proposed model performed better than the other models in estimating hourly solar radiation.
كشور :
ايران
تعداد صفحه 2 :
5
از صفحه :
697
تا صفحه :
701
لينک به اين مدرک :
بازگشت