شماره ركورد كنفرانس :
1523
عنوان مقاله :
Inversion of surface gravity data using iteratively reweighted bounded variables least squares method
پديدآورندگان :
Sobouti Alireza نويسنده , Motagh Mahdi نويسنده , Memarian Sorkhabi Omid نويسنده
كليدواژه :
Gravity data inversion , IRLS algorithm , norm minimization
عنوان كنفرانس :
شانزدهمين كنفرانس ژئوفيزيك ايران
چكيده فارسي :
We investigate an
1
L -norm based approach which produces subsurface density images with
sharp boundaries for inversion of surface gravity data. The density distribution of subsurface is
modeled with a uniform grid of rectangular cells. The density contrast of each cell relative to the
background density, is inverted for by minimizing the
1
L -norm of the data misfit with upper
and lower bounds on the density contrasts using the iteratively reweighted least squares (IRLS)
with bounded variables algorithm. The 2.5 dimensional synthetic tests show that this approach
retrieves structures with sharp boundaries acceptably, without the need of explicit
regularization. The quality of inversion, however, depends upon a proper estimation of the
minimum depth to the anomalous density body. A comparison of our results with 2 L -norm
based method on a noisy synthetic data set favors the
1
L -norm based approach.
شماره مدرك كنفرانس :
4355360