شماره ركورد كنفرانس :
2953
عنوان مقاله :
Estimation of Uniaxial Compressive Strength (UCS) Using Artificial Intelligence (AI) Methods
عنوان به زبان ديگر :
Estimation of Uniaxial Compressive Strength (UCS) Using Artificial Intelligence (AI) Methods
پديدآورندگان :
Asakere Abdoljavad نويسنده , Kamari Mosayyeb نويسنده , Abdide Mohamad نويسنده , Erfani-neya Ali نويسنده
كليدواژه :
petrophysical logs , Gas zones , Gas saturation percent , Artificial neural networks , ANN
عنوان كنفرانس :
دومين كنفرانس ملي ژئومكانيك نفت : كاهش مخاطرات اكتشاف و توليد
چكيده لاتين :
Reservoir rock lithology and fluids contacts can be determined by petrophysical logs. This determination uncertainty leds to uncertainty in hydrocarbon inplace estimation. The objective of this paper is introducing a new approaches for this purpose by artificial neural networks as one of the artificial intelligence technique. Estimation of hydrocarbon saturation and detection of these zone was done by this technique.
For this purpose, after data preprocessing and applying bad hole models, the investigations be done by four different types of artificial neural networks (MLP, RBF, LSSVM, CMIS) and petrophysical fullset logs (Rt, DT, RHOB, PEF, NPHI, GR, CALI). The results correlation coefficient for this type of ANN were 0.995, 0.995, 0.992 and 0.997 respectively. Compare with similar research by Discriminant Analysis with correlation coefficient of 92.2, this networks give the better outputs
شماره مدرك كنفرانس :
4411868