شماره ركورد كنفرانس :
3297
عنوان مقاله :
Online Streaming Feature Selection: a Review
عنوان به زبان ديگر :
Online Streaming Feature Selection: a Review
پديدآورندگان :
Eskandari Sadegh Department of Computer Science University of Guilan Rasht - Iran
كليدواژه :
Deep Learning , Big Data , Online Feature Streaming , Feature Selection
سال انتشار :
آبان 1396
عنوان كنفرانس :
نوزدهمين سمپوزيوم بين المللي هوش مصنوعي و پردازش سيگنال
چكيده لاتين :
Online streaming features (OSF) is an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with time as new features stream in. The critical challenge for online streaming feature selection (OSFS) is the unavailability of the entire feature set before learning starts. In this paper, we make the interested reader aware of the possibilities of OSFS, providing a basic taxonomy of OSFS techniques, and discussing their use, variety and potential in a number of both common as well as upcoming applications.
كشور :
ايران
تعداد صفحه 2 :
5
از صفحه :
1
تا صفحه :
5
لينک به اين مدرک :
بازگشت