شماره ركورد كنفرانس :
3297
عنوان مقاله :
Single Sample Face Identification Utilizing Sparse Discriminative Multi Manifold Embedding
عنوان به زبان ديگر :
Single Sample Face Identification Utilizing Sparse Discriminative Multi Manifold Embedding
پديدآورندگان :
Shahali Fatemeh Shiraz University , Nazemi Azadeh Shiraz University , Azimifar Zohreh Shiraz University
كليدواژه :
(Self Quotient Image (SQI , Feature extraction , Single Sample dataset , (Sparse Discriminative Multi Manifold Embedding (SDMME , Face Identification
عنوان كنفرانس :
نوزدهمين سمپوزيوم بين المللي هوش مصنوعي و پردازش سيگنال
چكيده لاتين :
This paper describes three methods to improve single
sample dataset face identification. The recent approaches to
address this issue use intensity and do not guarantee for the high
accuracy under uncontrolled conditions. This research presents
an approach based on Sparse Discriminative Multi Manifold
Embedding (SDMME), which uses feature extraction rather
than intensity and normalization for pre–processing to reduce the
effects of uncontrolled condition such as illumination. In the
worst case of illumination this study improves identification
accuracy about 17% compare to current methods.