شماره ركورد كنفرانس :
4749
عنوان مقاله :
Adaptive Optimal Tracking Control for a Class of Nonlinear Systems with Fully Unknown Parameters
پديدآورندگان :
Mohammadi Hossein h_mohammadi@shirazu.ac.ir Shiraz University , Shiri Hamid Shiraz University
تعداد صفحه :
6
كليدواژه :
Adaptive control , Optimal control , Tracking , Hamilton , Jacobi , Bellman , Identifier , Nonlinear systems
سال انتشار :
1396
عنوان كنفرانس :
پنجمين كنفرانس بين المللي كنترل، ابزار دقيق و اتوماسيون
زبان مدرك :
انگليسي
چكيده فارسي :
In this paper, a new adaptive optimal tracking approximate solution for the infinite-horizon function is presented to design a new controller for a class of fully unknown continuous-times nonlinear systems. A dynamic neural network identifier (DNN) derived from a Lyapunov function, is achieved to approximate the unknown system dynamics. We utilize an adaptive steady-state controller based on the identified plant to keep tracking performance and an adaptive optimal controller is used to stabilize the systems. A critic neural network is utilized for estimating optimal value function of the Hamilton-Jacobi- Bellman (HJB). The simulation examples are presented to confirm the effectiveness of the proposed controller method.
كشور :
ايران
لينک به اين مدرک :
بازگشت