شماره ركورد كنفرانس :
5090
عنوان مقاله :
رﻫﯿﺎﻓﺖ ﺳﯿﺴﺘﻢ ﻫﻮﺷﻤﻨﺪ ﺷﺒﮑﻪ ﻋﺼﺒﯽ در ﻣﺪﯾﺮﯾﺖ ﺧﺴﺎرات ﺟﺒﺮان ﻧﺎﭘﺬﯾﺮ ﺳﺮﻣﺎ زدﮔﯽ ﻣﺤﺼﻮﻻت ﮐﺸﺎورزي اﯾﺴﺘﮕﺎه ﺳﯿﻨﻮﭘﺘﯿﮏ ﻣﺸﻬﺪ
عنوان به زبان ديگر :
Artificial Neural Network Intelligent System Approach to Managing Irreparable Frost Damage (Mashhad Synoptic Station
پديدآورندگان :
رادﭘﻮر ﻓﺎﻃﻤﻪ فاقد وابستگي سازماني , رادﭘﻮر ﺳﻌﯿﺪ فاقد وابستگي سازماني
كليدواژه :
ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﻣﺼﻨﻮﻋﯽ , ﻣﺪل ﺳﺎزي , دﻣﺎ , اﯾﺴﺘﮕﺎه ﺳﯿﻨﻮﭘﺘﯿﮏ ﻣﺸﻬﺪ , محصولات ﮐﺸﺎورزي و مديريت
عنوان كنفرانس :
شانزدهمين كنگره ملي علوم زراعت و اصلاح نباتات ايران
چكيده فارسي :
ﯾﺦ زدﮔﯽ ﯾﮑﯽ از رﺧﺪادﻫﺎي ﺷﺪﯾﺪ ﻣﺮﺗﺒﻂ ﺑﺎ اﻗﻠﯿﻢ ﻣﯽ ﺑﺎﺷﺪ ﮐﻪ ﻣﯽ ﺗﻮاﻧﺪ ﭼﺎﻟﺶ ﻋﻤﺪه اي ﺑﺮاي ﮐﺸﺎورزان اﯾﺠﺎد ﻧﻤﺎﯾﺪ. از دﺳﺖ رﻓﺘﻦ ﮐﺎﻣﻞ ﻣﺤﺼﻮل و ﮐﺎﻫﺶ ﺷﺪﯾﺪ ﺗﻮﻟﯿﺪ از ﺟﻤﻠﻪ آﺛﺎر ﯾﺦ زدﮔﯽ ﻣﯽ ﺑﺎﺷﺪ ﮐﻪ ﻣﯽ ﺗﻮاﻧﺪ ﺧﺴﺎرات ﻣﺎﻟﯽ ﻋﻤﺪه اي ﺑﺮاي ﺗﻮﻟﯿﺪ ﮐﻨﻨﺪﮔﺎن ﮐﺸﺎورزي اﯾﺠﺎد ﻧﻤﺎﯾﺪ. ﺑﻪﻣﻨﻈﻮر ﺑﺮرﺳﯽ ﮐﺎراﯾﯽ ﺗﺨﻤﯿﻦ دﻣﺎ، از ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﻣﺼﻨﻮﻋﯽ در اﯾﻦ ﭘﮋوﻫﺶ اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ. دراﯾﻦ ﺑﺮرﺳﯽ دادهﻫﺎي ده ﺳﺎﻟﻪ ﻫﻮاﺷﻨﺎﺳﯽ ﻣﻮرد اﺳﺘﻔﺎده، ﺷﺎﻣﻞ ﺣﺪاﻗﻞ و ﺣﺪاﮐﺜﺮ دﻣﺎي ﻣﻄﻠﻖ، ﻣﯿﺎﻧﮕﯿﻦ دﻣﺎ ﺳﺮﻋﺖ و وزش ﺑﺎد، رﻃﻮﺑﺖ ﻧﺴﺒﯽ در ﺳﺎﻋﺎت 6 ،12:30، 18:30 رﻃﻮﺑﺖ ﻣﻄﻠﻖ و ﻣﺘﻮﺳﻂ رﻃﻮﺑﺖ، ﺳﺎﻋﺎت آﻓﺘﺎﺑﯽ و ﺗﺒﺨﯿﺮ ﺑﻮدهاﻧﺪ. ﺳﺎﺧﺘﺎر ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﺑﺎ ﭘﻨﺞ ﻻﯾﻪ ﻣﺨﻔﯽ ﺑﻪ ﻋﻨﻮان ﺑﻬﺘﺮﯾﻦ ﺳﺎﺧﺘﺎر اﻧﺘﺨﺎب ﮔﺮدﯾﺪ. دراﯾﻦ ﭘﮋوﻫﺶ از ﻣﻌﯿﺎر )R( ﺿﺮﯾﺐ ﺗﻌﯿﯿﻦ اﺳﺘﻔﺎده ﮔﺮدﯾﺪ. ﻫﻤﭽﻨﯿﻦ ﺿﺮﯾﺐ ﺗﻌﯿﯿﻦ0/9968 ﺑﺪﺳﺖ آﻣﺪ. ﻧﺘﺎﯾﺞ ﺣﺎﮐﯽ از آن ﺑﻮد ﮐﻪ ﻣﺪل ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﺗﻮاﻧﺎﯾﯽ ﺑﺎﻻﯾﯽ در ﻣﺪلﺳﺎزي ﺷﺮاﯾﻂ اﻗﻠﯿﻤﯽ دارد. از اﯾﻦ اﺑﺰار ﻣﯽﺗﻮان ﺟﻬﺖ ﻣﺪﯾﺮﯾﺖ ﺻﺪﻣﺎت ﯾﺦ زدﮔﯽ در ﻣﺤﺼﻮﻻت ﮐﺸﺎورزي و ﮐﺎﻫﺶ ﺧﺴﺎرات اﺳﺘﻔﺎده ﻧﻤﻮد.
چكيده لاتين :
Frostbite is one of the extreme climate-related events that can pose serious challenges to farmers.
Complete loss of yield and significant reduction in crop production are of the notable consequences of
frostbite that can lead to massive financial failure for agricultural producers. in order to evaluate the
efficacy of temperature estimation, an artificial neural network was employed in this study. The tenyear
meteorological data was used during this investigation, which included minimum and maximum
absolute temperatures, mean temperature and wind speed, relative humidity at 6, 12: 30, 18:30, absolute
humidity, average humidity, sunny hours and evaporation. The neural network structure with five
hidden layers was selected as the best structure. In this study, the coefficient of determination (R) was
calculated at 0.9968. The results showed that the neural network model has a high capability to model
frostbite-climate conditions. This tool can be utilized to manage frostbite injuries in crops and reduce
economic damages to farmers.