شماره ركورد كنفرانس :
5263
عنوان مقاله :
On strong incidence coloring of k-degenerate graphs
پديدآورندگان :
Mousavi Fatemeh Sadat fmousavi@znu.ac.ir Department of Mathematical Sciences, University of Zanjan, Zanjan, Iran. , Nouri Masoumeh m_nouri@znu.ac.ir Department of Mathematical Sciences, University of Zanjan, Zanjan, Iran
تعداد صفحه :
4
كليدواژه :
Strong incidence coloring , ‎strong incidence chromatic number , k , degenerate graph
سال انتشار :
1402
عنوان كنفرانس :
54 امين كنفرانس رياضي ايران
زبان مدرك :
انگليسي
چكيده فارسي :
An incidence of a graph G is a pair (u,e) where u is a vertex of G and e is an edge of G incident with u. Two incidences (u,e) and (v,f) of G are adjacent whenever (i) u = v, or (ii) e = f or (iii) uv = e or f. A strong incidence coloring of a graph G is a mapping from the set of incidences of G to the set of colors, such that every two incidences that are adjacent or adjacent to a same incidence receive distinct colors. The minimum number of colors needed for a strong incidence coloring of a graph is called the strong incidence chromatic number. In this paper, we prove that the strong incidence chromatic number of each k–degenerate graph G is at most 6k∆(G) − 3k2− 2∆(G) + 1.
كشور :
ايران
لينک به اين مدرک :
بازگشت