شماره ركورد كنفرانس :
5263
عنوان مقاله :
Evolution of geometric constant evolves by Ricci flow
پديدآورندگان :
Azami Shahroud azami@sci.ikiu.ac.ir Department of Mathematics, Faculty of Sciences, Imam Khomeini International University, Qazvin, Iran. , Hajiaghasi Sakineh s.hajiaghasi@edu.ikiu.ac.ir Department of Mathematics, Faculty of Sciences, Imam Khomeini International University, Qazvin, Iran.
كليدواژه :
Variation formula , Ricci flow , Riemannian manifold
عنوان كنفرانس :
54 امين كنفرانس رياضي ايران
چكيده فارسي :
We study the behavior of the lowest geometric constant, $lambda_{a,b}^{c}(g)$, along the Ricci flow such that there exist positive solutions to the following partial differential equation:$$-Delta u+aulog u+bR^{c}u=lambda_{a,b}^{c}(g)u$$with $int_{M}u^{2}dmu=1$, where $a,b$ and $c$ are real constants. We drive the evolution formula for the geometric constant $lambda_{a,b}^{c}(g)$ along the unnormalized and normalized Ricci flow.