شماره ركورد كنفرانس :
5263
عنوان مقاله :
A high-order fractional physics-informed neural network (fPINN) for solving time fractional diffusion equations with Caputo derivatives
پديدآورندگان :
Mostajeran Farinaz f_mostajeran@modares.ac.ir Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran. , Hosseini Seyed Mohammad hossei_m@modares.ac.ir Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran.
تعداد صفحه :
4
كليدواژه :
Caputo derivative , ‎fPINN , a high , order numerical method‎ , time fractional diffusion equations
سال انتشار :
1402
عنوان كنفرانس :
54 امين كنفرانس رياضي ايران
زبان مدرك :
انگليسي
چكيده فارسي :
‎In this paper‎, ‎a high-order fractional physics-informed neural network (fPINN) for solving time fractional diffusion equations with Caputo derivatives is presented‎. ‎To design the scheme‎, ‎the Caputo temporal derivative is approximated using a high-order method‎, ‎named L1-2-3‎. ‎Then we use the physics-informed neural network (PINN) to employ automatic differentiation and minimize the cost function with respect to the neural network parameters‎. ‎We prove that the loss function converges to zero and illustrate the effectiveness of the method by providing numerical examples‎.
كشور :
ايران
لينک به اين مدرک :
بازگشت