شماره ركورد كنفرانس :
5301
عنوان مقاله :
Machine learning model-based optimization of solar-powered direct volumetric steam generation
پديدآورندگان :
Azizi Zade Farzad farzad.azizizade@alumni.um.ac.ir M.Sc. student, Ferdowsi University of Mashhad, City , Ghafurian Mohammad Mustafa m.m.ghafoorian@mail.um.ac.ir Assistant professor, Ferdowsi University of Mashhad, City , Afsharian Ali ali.afsharian96@gmail.com M.Sc. student, Jacobs University Bremen, City , Niazmand Hamid Niazmand@um.ac.ir Professor, Ferdowsi University of Mashhad, City
تعداد صفحه :
5
كليدواژه :
optimization , machine learning , solar direct evaporation , desalination
سال انتشار :
1402
عنوان كنفرانس :
هشتمين كنفرانس دوسالانه انرژي پاك
زبان مدرك :
انگليسي
چكيده فارسي :
In recent years solar-powered desalination systems have received much attention as a clean and sustainable solution to freshwater demand. One challenge in the field is to maximize the system’s efficiency. This study focuses on the volumetric direct solar steam generation and provides a model-based optimization using support vector regression and decision tree regression ensemble molding. The model achieves train R2=0.99, validation R2=0.91, and test R2=0.92. For optimization, Nelder-Mead and differential evolution methods are used. Results predict that suspending 0.015 weight-percent of GNP-MWCNT to water achieves the maximum efficiency under 1 kW/m2 radiation.
كشور :
ايران
لينک به اين مدرک :
بازگشت