شماره ركورد كنفرانس :
102
عنوان مقاله :
RANDERS METRICS WITH SPECIAL PRINCIPAL CURVATURES
پديدآورندگان :
RAFIE-RAD M نويسنده
كليدواژه :
RANDERS METRICS , SPECIAL PRINCIPAL , Curvatures , Algebraic properties , Riemann curvature operator
عنوان كنفرانس :
مجموعه مقالات چهل دومين كنفرانس رياضي ايران
چكيده فارسي :
The algebraic properties of the Riemann curvature operator
have been the coral subject of numerous geometric results in differential
geometry. The eigenvalues ·1,...,·n¡1 of the Riemann curvature operator
are functions defined on TM0 and are important geometric quantities in
Riemann-Finsler geometry. Here, significantly considerable forms of a principal
curvature are studied. It is proved that every Randers metric with
one principal curvature ·(y) = k(x)F2(y) is of isotropic S-curvature. Moreover,
a result on Ricci-quadratic Randers metrics is languidly proved: every
Randers metric with one quadratic principal curvature is also of isotropic
S-curvature.
شماره مدرك كنفرانس :
1994188