شماره ركورد كنفرانس :
102
عنوان مقاله :
TOPOLOGICAL INDEX AND SYMMETRY PROPERTIES IN SOME GRAPHS
پديدآورندگان :
FIROUZIAN SIAMAK نويسنده , NOURI JOUYBARI MOSTAFA نويسنده
تعداد صفحه :
4
كليدواژه :
Topological index , graphs , Symmetry properties
عنوان كنفرانس :
مجموعه مقالات چهل دومين كنفرانس رياضي ايران
زبان مدرك :
فارسی
چكيده فارسي :
A Topological index of a graph G is a number which is invariant under graph isomorphism. Wiener index, PI index, Szeged index are important Topological indices in Graphs. The Wiener index of a graph G is defined as W(G) = 1 2 P fx;ygµV (G) d(x; y), where V (G) is the set of all vertices of G and for x; y 2 V (G), d(x; y) denotes the length of a minimal path between x and y. In this paper, we discuss about computing Topological indices in some graphs and symmetric properties of graph.
شماره مدرك كنفرانس :
1994188
سال انتشار :
1390
از صفحه :
1
تا صفحه :
4
سال انتشار :
0
لينک به اين مدرک :
بازگشت