شماره ركورد كنفرانس :
1677
عنوان مقاله :
A Survey of Data Mining Techniques for Software Fault Prediction
پديدآورندگان :
Rahmani Ghobadi Zahra نويسنده , Sojodi Shijani Omid نويسنده , Rashidi Heramabadi Hasan نويسنده
كليدواژه :
Software fault prediction , DATA MINING
عنوان كنفرانس :
هشتمين كنفرانس بين المللي تجارت الكترونيك با رويكرد بر اعتماد الكترونيك
چكيده لاتين :
One of the most important goals of fault
prediction is to detect fault prone modules as early as
possible in the software development life cycle. Early
detection of software faults could lead to reduced
development costs and rework effort and more reliable
software. So, the study of the fault prediction is important
to achieve software quality. Different data mining
algorithms are used to extract fault prone modules. In this
survey we will discuss data mining techniques that are
association mining, classification and clustering for software
fault prediction. This helps the developers to detect software
faults and correct them.
شماره مدرك كنفرانس :
2597914