شماره ركورد كنفرانس :
1730
عنوان مقاله :
A New Hybrid Algorithm Based on Firefly Algorithm and Cellular Learning Automata
عنوان به زبان ديگر :
A New Hybrid Algorithm Based on Firefly Algorithm and Cellular Learning Automata
پديدآورندگان :
Hassanzadeh Tahereh نويسنده , Meybodi Mohammad Reza نويسنده
تعداد صفحه :
6
كليدواژه :
Firefly Algorithm , Cellular Learning Automata , Global search , Local search , optimization
سال انتشار :
2012
عنوان كنفرانس :
بيستمين كنفرانس مهندسي برق ايران
زبان مدرك :
فارسی
چكيده لاتين :
In this paper, a new evolutionary optimization model, called CLA-FA, is proposed. This new model is a combination of a model called cellular learning automata(CLA) and the Firefly Algorithm (FA). In the proposed algorithm, at first we modify the firefly algorithm to improve the efficiency of this algorithm then we use thisalgorithm with CLA. in the proposed algorithm, each dimension of search space is assigned to one cell of cellular learning automata and in each cell a swarm offireflies are located which have the optimization duty of that specific dimension. The learning automata in eachcell are responsible for making diversity in fireflies’ swarm of that dimension and adapting the FA parameters for equivalence between global search and local searchprocesses. In order to evaluate the proposed algorithm, we used five well known benchmark function, including:Sphere, Ackly Rastrigin, Xin-she yang and Step functions in 10, 20 and 30 dimensional spaces. The experimental results show that our proposed method canbe effective to find the global optima and can improve the global search and the exploration rate of the standard firefly algorithm
شماره مدرك كنفرانس :
4460809
سال انتشار :
2012
از صفحه :
1
تا صفحه :
6
سال انتشار :
2012
لينک به اين مدرک :
بازگشت