شماره ركورد كنفرانس :
1730
عنوان مقاله :
SVBO : Support Vector - Based Oversampling for Handling Class Imbalance in k-NN
عنوان به زبان ديگر :
SVBO : Support Vector - Based Oversampling for Handling Class Imbalance in k-NN
پديدآورندگان :
Ghazikhani Adel نويسنده , Monsefi Reza نويسنده , Sadoghi Yazdi Hadi نويسنده
تعداد صفحه :
6
كليدواژه :
Class imbalance , K-NN , Support vector data description , Oversampling , Algorithm
سال انتشار :
2012
عنوان كنفرانس :
بيستمين كنفرانس مهندسي برق ايران
زبان مدرك :
فارسی
چكيده لاتين :
We propose a novel algorithm for handling class imbalance in the k-NN classifier. Class imbalance is a problem occurring in some valuable data such as medical diagnosis,fraud detection, oil spills and etc. The problem influences all supervised classification algorithms therefore a large amount ofresearch is being done. We tackle the problem by preprocessing the data using oversampling techniques. A two phase algorithm, based on Support Vector Data Description (SVDD) is proposed.SVDD is a tool for data description. In our approach we firstly describe data from the minority class i.e. the class with lessdata using SVDD. This is followed by oversampling of the support vectors, which is suitable for k-NN. We evaluate ourmethod using real world datasets with different imbalance ratios and compare it with four other oversampling methods namely SMOTE, Borderline SMOTE, random oversampling and cluster based sampling. The results show that the proposed algorithm is a suitable preprocessing method for the k-NN classifier
شماره مدرك كنفرانس :
4460809
سال انتشار :
2012
از صفحه :
1
تا صفحه :
6
سال انتشار :
2012
لينک به اين مدرک :
بازگشت