شماره ركورد كنفرانس :
1151
عنوان مقاله :
Comparisons Between Bernstein Polynomials and Homotopy Perturbation Method to Numerical Solutions of Fredholm Integral Equations
عنوان به زبان ديگر :
Comparisons Between Bernstein Polynomials and Homotopy Perturbation Method to Numerical Solutions of Fredholm Integral Equations
پديدآورندگان :
Amirfakhrian Majid نويسنده , Mirzaei Mahmood نويسنده
كليدواژه :
Homotopy perturbation method , Bernstein polynomials , Fredholm integral equation
عنوان كنفرانس :
دومين همايش ملي رياضيات و كاربردهاي آن
چكيده لاتين :
In this paper, Bernstein piecewise polynomials and homotopy perturbation method are used
to solve the Fredholm integral equations numerically. A matrix formulation is given for a
non-singular linear Fredholm Integral Equation by the technique of Galerkin method. In the
Galerkin method, the Bernstein polynomials are exploited as the linear combination in the
approximations as basis functions. The homotopy perturbation method is a efficient method
for solving a broad spectrum of problems. For use the homotopy perturbation method, a
suitable construction of a homotopy equation is of vital importance.
شماره مدرك كنفرانس :
4475081