شماره ركورد كنفرانس :
144
عنوان مقاله :
Implementation and Optimization of a Speech Recognition System Based on Hidden Markov Model Using Genetic Algorithm
پديدآورندگان :
Farsi Hassan نويسنده Department of Electronics and Communications Engineering, University of Birjand, Birjand, Iran , Saleh Reza نويسنده
تعداد صفحه :
5
كليدواژه :
speech recognition , Hidden Markov model , Feature vector , Vector Quantization , genetic algorithm
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
زبان مدرك :
فارسی
چكيده فارسي :
In this paper, a speech recognition system with isolated words is implemented. Discrete hidden Markov model is used to recognize words. Feature vector consists of cepstral and delta cepstrum coefficients which are extracted from speech signal frames. Since the discrete Markov model is used, the feature vector is mapped to a discrete element by a vector quantizer. One of the problems we face in training of Markov model is that the classical training method could obtain locally optimal solution. To overcome this problem we have used genetic algorithm to get globally optimal solution. Experimental results show that this hybrid speech recognition obtains better performance than traditional method.
شماره مدرك كنفرانس :
3817034
سال انتشار :
2014
از صفحه :
1
تا صفحه :
5
سال انتشار :
0
لينک به اين مدرک :
بازگشت