شماره ركورد كنفرانس :
144
عنوان مقاله :
An AIS Based Feature Selection Method For Software Fault Prediction
پديدآورندگان :
Soleimani A نويسنده , Asdaghi F نويسنده
تعداد صفحه :
5
كليدواژه :
Software fault prediction , artificial immune system , Feature selection , Immune Network Algorithm
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
زبان مدرك :
فارسی
چكيده فارسي :
Software fault prediction plays a vital role in software quality assurance. Identifying the faulty modules helps to well concentrate on those modules and helps improve the quality of the software. With increasing complexity of software nowadays feature selection is important to remove the redundant, irrelevant and erroneous data from the dataset. In general, feature selection is done mainly based on filter and wrapper. In this paper, an AIS based feature selection method is proposed to make a better prediction in comparison with the traditional ones. NASA’s public dataset KC1 available at promise software engineering repository is used. Results show that the selected subset of features increases the accuracy of classifier from 82.44% to 83.72% which is better than other methods results
شماره مدرك كنفرانس :
3817034
سال انتشار :
2014
از صفحه :
1
تا صفحه :
5
سال انتشار :
0
لينک به اين مدرک :
بازگشت