شماره ركورد كنفرانس :
1730
عنوان مقاله :
Class Imbalance Handling Using Wrapper-based Random Oversampling
عنوان به زبان ديگر :
Class Imbalance Handling Using Wrapper-based Random Oversampling
پديدآورندگان :
Ghazikhani Adel نويسنده , Sadoghi Yazdi Hadi نويسنده , Monsefi Reza نويسنده
تعداد صفحه :
6
كليدواژه :
Genetic algorithms , Class imbalance , genetic algorithm , Oversampling , Wrapper preprocessing , Pattern classification
سال انتشار :
2012
عنوان كنفرانس :
بيستمين كنفرانس مهندسي برق ايران
زبان مدرك :
فارسی
چكيده لاتين :
we propose a novel algorithm for handling classimbalance. Class imbalance is a problem occurring in some valuable data such as medical diagnosis, fraud detection, oilspills, etc. The problem influences all supervised classification algorithms therefore a large amount of research is being done.The problem is tackled by preprocessing the data using wrapper-based random oversampling. Wrapper is a preprocessing approach that makes use of system (classifier)feedback to guide preprocessing. The wrapper approach is used to find regions suitable for sampling. Genetic algorithm is usedas the basis of the wrapper approach to evolve the optimal regions. After specifying the optimal region random oversampling is performed to generate synthetic data. Weevaluate our method using real world datasets with different imbalance ratios. We use two different classifiers that areFisher and k-NN. The proposed algorithm is compared with two other oversampling methods namely SMOTE and random oversampling. The results show that the proposed algorithm is asuitable preprocessing method for handling class imbalance
شماره مدرك كنفرانس :
4460809
سال انتشار :
2012
از صفحه :
1
تا صفحه :
6
سال انتشار :
2012
لينک به اين مدرک :
بازگشت