شماره ركورد كنفرانس :
144
عنوان مقاله :
Dynamic Agent-Based Reward Shaping for Multi-Agent Systems
پديدآورندگان :
Sadeghlou Maryam نويسنده , Akbarzadeh-T Mohammad Reza نويسنده
كليدواژه :
Dynamic Agents , Multi-agent systems
عنوان كنفرانس :
مجموعه مقالات دوازدهمين كنفرانس سيستم هاي هوشمند ايران
چكيده فارسي :
Earlier works have reported that reward shaping
accelerates the convergence of reinforcement learning
algorithms. It also helps to make better use of existing
information. In this article we propose the use to modify Qlearning
in multi agent systems by the use of reward shaping
depending on agent state regarding other agents. We study
this method with different choices, which indicate different
effects of this method on the maze problem. The results
indicate the directional search, reduces the number of steps
to reach the target in the proposed modified approach if
appropriate parameters are utilized
شماره مدرك كنفرانس :
3817034