Author/Authors :
anongba, p.n.b. université de cocody, 22 bp 582 22, - u f r sciences des structures de la matière et de technologie, Côte d’Ivoire , anongba, p.n.b. université de poitiers - laboratoire de physique des matériaux, umr cnrs 6630, France , bonneville, j. université de poitiers - laboratoire de physique des matériaux, umr cnrs 6630, France , joulain, a. université de poitiers - laboratoire de physique des matériaux, umr cnrs 6630, France
Abstract :
An estimate is made of the contribution of Poisson effect to the conditions for the propagation of a planar crack subjected to uniform compression in the framework of linear isotropic elasticity. When comparison is made with tension, (1/v ) times larger stress is required to break a fracture specimen in compression (v is Poisson’s ratio). The treatment considers an inclined planar crack with respect to the applied compression direction and provides an expression of the crack extension force G per unit length of the crack front as a function of the inclination slope p of the crack. A representation of the crack by a continuous distribution of edge dislocations with infinitesimal Burgers vectors is adopted. It is shown that the inclined crack can be described by two distinct dislocation families responding to the applied compression and the induced internal Poisson tension, respectively.
NaturalLanguageKeyword :
continuum mechanics , crack propagation , dislocations , Poisson effect , fracture mechanisms