DocumentCode :
1000800
Title :
Mechanical characterization and design of flexible silicon microstructures
Author :
Lisby, Torben ; Nikles, Stefan A. ; Najafi, Khalil ; Hansen, Ole ; Bouwstra, Siebe ; Branebjerg, Jens A.
Author_Institution :
DELTA Danish Electron., Light & Acoust., Horsholm, Denmark
Volume :
13
Issue :
3
fYear :
2004
fDate :
6/1/2004 12:00:00 AM
Firstpage :
452
Lastpage :
464
Abstract :
A variety of different silicon structures has been fabricated and characterized mechanically to optimize the design of silicon ribbon cables used in neural probes and multichip packaging structures. Boron-doped 3-μm-thick silicon beams were tested in three modes: bending in plane, twisting (along beam axis), and pushing. Various cable configurations were investigated (straight beams, curved beams, meandered beams, etc.) as well the effects of length, width, cable termination, and the presence of reinforcing spans between multistranded cables. The results along with finite element modeling indicated that many simple modifications could be made to increase the strength and flexibility of silicon ribbon cables. One structure, a meandered beam 200-μm wide and 2-mm long could be twisted up to 712°. It also was seen that structures having multiple 20-μm-wide beams were generally more robust than those with a single 500-μm-wide beam. Finally, a method for easy determination of the bending fracture strain is analyzed and verified. It was seen that the silicon structures tested broke after a strain slightly above 2%.
Keywords :
boron; cables (electric); elemental semiconductors; finite element analysis; interconnections; micromechanical devices; multichip modules; probes; silicon; 3 microns; Si:B; bending fracture strain; cable configurations; finite element modelling; flexible silicon microstructures; meandered beam; mechanical characterization; microflex interconnects; miniature ribbon cables; multichip packaging structures; multistranded cables; neural probes; silicon ribbon cables; Capacitive sensors; Design optimization; Finite element methods; Mechanical cables; Microstructure; Packaging; Probes; Robustness; Silicon; Testing; Microflex interconnects; miniature ribbon cables; multichip packaging;
fLanguage :
English
Journal_Title :
Microelectromechanical Systems, Journal of
Publisher :
ieee
ISSN :
1057-7157
Type :
jour
DOI :
10.1109/JMEMS.2004.828744
Filename :
1303623
Link To Document :
بازگشت